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1 Introduction: Ahlfors’s Univalence Criterion

In this note we special mapping properties of an analytic function f satisfying any of the 1-parameter
families of bounds on the Schwarzian dervative Sf of a type first considered by Ahlfors:∣∣∣∣∣Sf(z)− 2t(1− t)z̄2

(1− |z|2)2

∣∣∣∣∣ ≤ 2t
(1− |z|2)2

, (1.1)

for 1 ≤ t ≤ 2, and∣∣∣∣∣Sf(z)− 2t(1− t)z̄2

(1− |z|2)2

∣∣∣∣∣ ≤ 2t
(1− |z|2)2

+
2π

(1− |z|2)2t

(
Γ(3

2 − t)
Γ(1− t)

)2

, (1.2)

for 0 ≤ t < 1. Here f is analytic and locally univalent in the unit disk D and

Sf =
(
f ′′

f ′

)
− 1

2

(
f ′′

f ′

)2

.

Recall that
S(T ◦ f) = Sf

when T is a Möbius transformation.
The inequalities (1.1) and (1.2) are univalence criteria; a function satisfying either is univalent

in the disk. Furthermore, as was shown in [3] for more general criteria, any such function has a
continuous extension to D. Taking t = 0 and 1, respectively, we obtain well known and well studied
conditions of Nehari,

|Sf(z)| ≤ π2

2
and |Sf(z)| ≤ 2

(1− |z|2)2
.

We will exlcude the case t = 1 from our analysis except for a few comments later on. For the other
values of t the conditions were derived originally by Ahlfors in [1]. He allowed the parameter t to
be complex, but his condition did not include the second term on the right hand side of (1.2). We
explain this briefly at the end of this section.

Next, a bounded, simply connected domain Ω is called a John domain if there is a positive
constant a such that for every crosscut C of Ω the inequality

diamH ≤ a diamC,

holds for a component H of Ω\C, where the condition is on the euclidean diameter; see [7]. A John
domain is not necessarily a Jordan domain.

We shall prove the following theorem.
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Theorem 1 Let 1 < t ≤ 2. If f satisfies (1.1) and f(D) is bounded, then f(D) is a John domain.

This is surprising, but with the proper set-up the analysis becomes quite simple.

More is true for 0 ≤ t < 1 and the criterion (1.2). First, recall that a quasidisk is the image of
D under a quasiconformal mapping of the sphere. A bounded quasidisk is a John domain, but not
conversely. Next, if 0 ≤ t < 1 and f satisfies (1.2) then

(1− |z|2)2|Sf(z)| ≤ 2t(1− t)|z|2 + 2t+O((1− |z|2)2(1−t)),

and hence
lim sup
|z|→1

(1− |z|2)2|Sf(z)| ≤ 2t(2− t) < 2.

A theorem of Gehring and Pommerenke in [5] now allows us to conclude that f(D) is a quasidisk
as long as f(D) is a Jordan domain.

To go further we adopt the terminology in [3] and say that a function F satisfying a univalence
criterion (such as the ones we are considering, but even more generally) is an extremal function
for the criterion if F (D) is not a Jordan domain. An extremal function for the case t = 0 is
F (z) = tan(π2 z); this is the unique extremal up to rotation. For 0 < t < 1/2, there are no extremal
functions, i.e., all images are Jordan domains. For 1/2 ≤ t < 1 extremals are given by

F (z) =
δ

π
tan

(
π

δ

∫ z

0

dζ

(1− z2)t

)
, (1.3)

where

δ = δ(t) = 2
∫ 1

0

dx

(1− x2)t
=
√
π

Γ(1− t)
Γ(3

2 − t)
. (1.4)

Once again, in this case these are the unique extremals up to rotation. For these facts see [2] and
[3].

We summarize these remarks as a theorem.

Theorem 2 If 0 ≤ t < 1 and f satisfies (1.2) then the image f(D) is a quasidisk unless f is an
extremal function. If 0 < t < 1/2 the image is a quasidisk.

We are grateful to the referee for pointing out this simple application of the Gehring-Pommerenke
theorem as a strengthening of Theorem 1 for t in this range. Previously we had shown, by argu-
ments similar to those in the next section, that the images are John donains (in all cases, including
the extremals).

We also call attention to a phenomenon for the case t = 1 (Nehari’s 2/(1 − |z|2)2 - criterion).
The John condition forbids outward cusps and is, in that sense, ‘half of’ what it takes for a domain
to be a quasidisk. In [4] it was shown that if f satisfies (1.1) for t = 1 and if f(D) is a John
domain, then it is a quasidisk. We do not know if this holds for the parametrized family of criteria
in Theorem 1, that is if all the images other than the extremals are quasidisks in this case too.

We conclude this introduction with a few remarks about Ahlfors’s criteria in a broader context.
It is now understood that the conditions (1.1) and (1.2) correspond to particular cases of a very
general univalence criterion in [6] for conformal mappings of Riemannian manifolds, applied in this
case to D with the 1-parameter family of metrics

gt =
|dz|2

(1− |z|2)2t
. (1.5)
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Both the Gaussian curvature of the metric and the metric diameter of the disk enter in applying
the general theorem. The curvature of gt is always non-positive, though not constant. If t ≥ 1 then
g is complete, while if t < 1, D has finite diameter equal to δ(t) in (1.4), which is how the gamma
functions come into (1.2). Note that δ(t)→∞ as t increases to 1, and (1.1) and (1.2) coincide.

2 Proof of Theorem 1: Convexity and Extremal Functions

We will use a characterization of John domains proved in [4], namely that a simply connected
domain f(D) is John if and only if there exist r0, σ ∈ (0, 1) and β > 1 such that

(1− r2)|f ′(rζ)|
(1− s2)|f ′(sζ)|

≥ β (2.1)

for all |ζ| = 1, r0 ≤ r < 1 and

s =
r + σ

1 + rσ
.

Naturally, this is a condition on a neighborhood of the boundary.
We will also appeal to some of the results in [3] applied to Ahlfors’s criteria. The key ideas have

to do with convexity.
Let f be a bounded function satisfying (1.1). Compose f with a Möbius transformation of the

range so that

f(z) =
1
z

+ b0 + b1z + · · · , (2.2)

still calling the normalized function f . Composition with a Möbius transformation does not change
the Schwarzian, and we are going to show that the normalized function satisfies (2.1) near |z| = 1.
Since we started with a bounded function, applying the inverse of the Möbius transformation used
to get (2.2) will not invalidate the John condition (2.1).

Let |ζ| = 1 and for 0 ≤ r < 1 define

u(r) =
1√

(1− r2)t|f ′(rζ)|
.

The normalization on f implies that

u(0) = 0, u′(0) = 1. (2.3)

¿From the convexity results in [3] it follows that

((1− r2)tu′(r))′ ≥ 0. (2.4)

Thus u satisfies
(pu′)′ ≥ 0

with the initial conditions u(0) = 0 and u′(0) = 1, where

p(r) = (1− r2)t.

The differential inequality (2.4) can be checked directly, but it arises from (1.1) (and more
generally in [3]) by evaluating the Hessian of u along a radius and using the fact that a radius is
a geodesic for the metric |dz|/(1 − |z|2)t. The factor of (1 − r2)t comes from giving the radius its
arclength parametrization for this metric.
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Next, an extremal function for (1.1) is

F (z) =
∫ z

0

dζ

(1− ζ2)t
. (2.5)

For this extremal F (1) = F (−1) =∞, and F maps [0, 1) onto [0,∞) with F (0) = 0 and F ′(0) = 1.
Since F ′(r) = 1/p(r), we may write

(pF ′)′ = 0, (2.6)

We now have a differential equation and inequality, (2.6) and (2.4), and it is then trivial to
check that

w = u ◦ F−1

is a convex function. (We will state a more general, but no more difficult version of this observation
at the end of this section.)

We make use of this convexity to comapare u to the extremal function F . Let y2 ≥ y1 > 0.
From the convexity and the initial conditions we have

w(y2)− w(y1) ≥ w′(y1)(y2 − y1) and w(y1) ≤ w′(y1)y1,

and hence
w(y2)
w(y1)

≥ y2

y1
.

Now let r = F−1(y1) and s = F−1(y2). Then

u(s)
u(r)

≥ F (s)
F (r)

.

We shall estimate the right hand side.
Assume now that t > 1, as in the hypotheses of Theorem 1. We have

F (s)
F (r)

=

∫ s

0

dx

(1− x2)t∫ r

0

dx

(1− x2)t

≥ 1
2t

∫ s

0

dx

(1− x)t∫ r

0

dx

(1− x)t

=
1
2t

(
1− r
1− s

)µ 1− (1− s)µ

1− (1− r)µ
≥ 1

2t

(
1− r
1− s

)µ
,

where µ = t− 1. Thus
u(s)
u(r)

≥ 1
2t

(
1− r
1− s

)µ
,

which implies that

(1− r2)|f ′(rζ)|
(1− s2)|f ′(sζ)|

≥
(

1
2t

)2
(

1− s2

1− r2

)µ (
1− r
1− s

)2µ

≥
(

1
2t

)2 (1− r
1− s

)µ
.

If
s =

r + σ

1 + rσ

then (
1− r
1− s

)µ
=
(

1 + rσ

1− σ

)µ
≥ 1

(1− σ)µ
,
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which shows that
(1− r2)|f ′(rζ)|
(1− s2)|f ′(sζ)|

can be made bigger than any fixed β provided σ is chosen sufficiently close to 1.

This completes the proof of the theorem.

Remark The argument above uses a special case of a statement on the ‘relative convexity’ of
solutions of a differential equation and inequality. We have found this useful here and on other
occasions and we formulate it as follows.

Lemma [Relative Convexity] Let u, v, p > 0 and q be defined in [0, 1) and suppose that

(pu′)′ + qu ≥ 0, (2.7)

and that
(pv′)′ + qv = 0. (2.8)

Then the function
w = (

u

v
) ◦ F−1

is convex, where F is defined by F ′ = 1/pv2.
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